

Integration Guide

Document Information:

Document status: Draft
Approved by HEALTHeID

Consortium

Document Version: 0.10

Author(s):

Klay Rocha, Maximiano Pereira, João Cunha (SPMS), Alberto Zanini
(ARIA – former LISPA), Abel Tenera, Carlos Coutinho (Caixa Magica),
Andrew Short (AUTH), Giuseppe Burrai (POLITO), Cesare Cameroni
(POLITO)

Member State
Contributor(s):

SPMS (Portugal), AUTH (Greece), ARIA – former LISPA (Italy),
POLITO (Italy)

Stakeholder
Contributor(s):

HEALTHeID
Integration Guide

2 of 59

Summary	
1.1 About this document ... 4

1.2 HEALTHeID architectural diagram ... 4

1.3 Artefacts ... 4

1.4 Security considerations .. 6

1.5 HP I/O ... 9

1.6 HeID Client ... 10

1.7 HeID Connector .. 13

1.7.1 Workflow Manager ... 14

1.7.2 eIDAS-HProxy ... 26

- Prerequisites ... 27

- Installation ... 27

- Configuration .. 27

- eIDAS Specific Configuration: .. 31

New Keystore Setup ... 32

- Module configuration ... 34

1.7.3 NCP National Adapter ... 39

1.7.4 NCP HProxy .. 41

1.7.5 Patient I/O .. 46

1.7.6 HeID Connector – Flow Example .. 52

1.8 NCPeH-A .. 54

1.9 NCPeH-B .. 56

1.10 eIDAS National Adapter ... 56

1.11 PatientID Resolver ... 59

Table of revisions

Date Comments Authors

08/08/2019 First draft Klay Rocha, Maximiano
Pereira, João Cunha (SPMS),
Alberto Zanini (ARIA – former
LISPA), Abel Tenera, Carlos
Coutinho (Caixa Magica),
Andrew Short (AUTH),
Giuseppe Burrai (POLITO)

HEALTHeID
Integration Guide

3 of 59

02/09/2019 Version 0.2 – Revision,
comments and new sections 1.3

and 1.4

João Cunha (SPMS)

10/09/2019 Version 0.3 – section 1.10
revised

Alberto Zanini (ARIA – former
LISPA)

10/09/2019 Version 0.4 – revision of 1.7.1
and 1.7.2; added Notification

Adapter in 1.7.5

Giuseppe Burrai (POLITO)

13/09/2019 Version 0.5 – editorial revision;
properties configurations in

section 1.7.1, 1.7.4 and 1.7.5

João Cunha (SPMS)

16/09/2019 Version 0.6 – minor revision of
section 1.7.2; properties

configuration in section 1.7.5

João Cunha (SPMS)

24/10/2019 Version 0.7 – Revision to
section 1.7.2; changes to

property structure

Andrew Short (AUTH), Cesare
Cameroni (POLITO), João

Cunha (SPMS)

27/10/2019 Version 0.8 – Transferathon
version

João Cunha (SPMS)

13/11/2019 Version 0.9 – Feedback from
Transferathon

João Cunha (SPMS)

18/11/2019 Version 0.10 – Feedback from
HeID Consortium; Patient I/O

improvements

João Cunha (SPMS)

Bibliography

Id Document title Authors

HEALTHeID
Integration Guide

4 of 59

1.1 About this document

This	 “Integration	 Guide”	 has	 been	 created	 to	 describe	 the	 several	 components	
developed	 in	 the	HEALTHeID	and	give	a	 reference	manual	 to	 the	Member	States	
willing	 to	 integrate	 such	 components.	 After	 a	 quick	 view	 of	 the	 architecture	
implemented	in	the	project,	every	component	is	described	and	details	concerning	
their	installation	and	configuration	are	provided.	

1.2 HEALTHeID architectural diagram

Figure 1 - HEALTHeID Connector architectural diagram
	
Figure	1	describes	both	the	internal	architecture	of	the	HEALTHeID	Connector	as	
well	as	its	integration	in	the	overall	architecture	scenario	comprising	the	NCP	and	
eIDAS	worlds,	as	well	as	 the	Service	Provider	and	any	potential	portal	 contained	
within	the	latter.	This	architecture	and	the	components	identified	emerge	from	the	
functional	 requirements	 identified	 in	 deliverable	 D2.1	 HEALTHeID	 Functional	
Specification,	which	we	recommend	to	read	in	advance.	
	

1.3 Artefacts

HEALTHeID	components’	source	code	is	available	at	CEF	Digital	OpenNCP	Bitbucket	
in:	https://ec.europa.eu/cefdigital/code/projects/EHNCP/repos/health-eid
The	 specific	 OpenNCP	 components	 used	 in	 this	 project	 are	 based	 on	 version	
3.0.0.RC3,	so	the	environment	must	have	this	version	deployed.	For	the	purposes	of	

HEALTHeID
Integration Guide

5 of 59

installing	 the	 HeID	 Connector	 components	 (see	 architecture	 diagram),	 it’s	
recommended	to	use	a	separate	Tomcat,	preferably	version	8.	
The	 following	 table	 shows	 how	 the	 different	 Maven	 projects	 materialize	 into	
deployable	artefacts:	

Component	 Maven	
project	

Packaging	 Deployable	
(Y/N)	

Mandatory	
(Y/N)	

HeID	Client	 healtheid-
client	

JAR	 Yes,	 within	 a	
portal.	

No.	Each	MS	can	
create	 its	 own	
client.	 This	 one	
is	 a	 reference	
implementation	
provided	 for	
demonstration	
purposes.	

OpenNCP	 Portal	
(HP	Data	I/O)	

openncp-
portal	

WAR	 Yes.	 No.	Each	MS	can	
create	 its	 own	
portal.	This	one	
is	 a	 reference	
implementation	
provided	 for	
demonstration	
purposes.	

HEALTHeID	
Connector	

healtheid-
connector	

WAR	 Yes	 Yes	

	 Patient	 Data	
I/O	

healtheid-
connector	

-	 No,	 not	 as	 a	
single	
component,	
but	 contained	
in	 the	 bigger	
HEALTHeID	
Connector	
WAR	file.	

Yes	

	 Workflow	
Manager	

healtheid-
connector	

-	 No,	 not	 as	 a	
single	
component,	
but	 contained	
in	 the	 bigger	
HEALTHeID	
Connector	
WAR	file.	

Yes	

HEALTHeID
Integration Guide

6 of 59

	 Notification	
Adapter	 (not	
included	in	the	
architecture	
diagram)	

healtheid-
notification-
adapter	
healtheid-
notification-
adapter-
interface	

JAR	 Yes,	 within	
HEALTHeID	
Connector.	

No,	 can	 be	
replaced	 by	 a	
custom	 one.	
This	 default	
implementation	
provides	 email	
features.	

eIDAS	HProxy	 eidas-hproxy	 WAR	 Yes	 Yes	

eIDAS	 National	
Adapter	

eIDAS	
National	
Adapter	

WAR	 Yes	 No	

eIDAS	 National	
Adapter	Stub	

eIDAS	
National	
Adapter	

WAR	 Yes	 No	

NCP	HProxy	 healtheid-
ncp-hproxy	

WAR	 Yes	 Yes	

NCP	 National	
Adapter	

openncp-
national-
adapter	
openncp-
national-
adapter-
interface	

JAR	 Yes,	 within	
NCP	HProxy.	

Yes,	 either	 this	
default	
implementation	
or	 a	 nationally-
developed	one.	

OpenNCP	 Client	
Connector	

openncp-
client-
connector	

WAR	 Yes	 Yes	

OpenNCP	
Gateway	

openncp-
gateway	

WAR	 Yes	 Yes	

		

1.4 Security considerations

The	 HEALTHeID	 Connector	 exposes	 some	 internal	 (between	 components)	 and	
external	(to	the	end-user)	endpoints	under	HTTPS.	In	order	to	identify	the	needs	for	
specific	 certificates	 protecting	 such	 endpoints,	 a	 summary	 of	 the	 components	
requirements	 in	 terms	 of	 endpoints	 and	 their	 certificates	 is	 presented	 in	 the	
following	table.		
Note:	 certificates	 for	 OpenNCP	 components	 and	 eIDAS	 national	 components	 are	
considered	out	of	scope.	

HEALTHeID
Integration Guide

7 of 59

	
	
	

Component	 Certif
icate	
(Y/N)	

Endpoint	 Client	 HTTPS	
(1-/2-
way	

SSL/TLS)	

HeID	Client	 No	 -	 -	 -	

OpenNCP	
Portal	 (HP	
Data	I/O)	

No	 -	 -	 -	

HEALTHeID	
Connector	

Yes	 (see	below)	 (see	below)	 (see	
below)	

	 Patient	
Data	I/O	

Yes	 Base	URL:	https://<hostname/ip>:<port>	
• /patientEncounter/patientAcknow

ledge	
• /patientEncounter/additionalPatie

ntData	

Patient	
(end-user)	

1-way	
SSL/TLS	

	 Workflow	
Manager	

Yes	 Base	URL:		
https://<hostname/ip>:<port>/healtheid-connector	

-	 1-way	
SSL/TLS	

• /encounter/createEncounter	
• /encounter/requestPatientData	
• /encounter/receiveNotice	

HeID	Client	

• /patientEncounter/acceptEncount
er/{token}	

• /patientEncounter/additionalPatie
ntData	

• /patientEncounter/patientAcknow
ledge	

• /patientEncounter/acknowledge	

Patient	I/O	

• /heidconnector/acceptPatientAut
hN	

eIDAS	
HProxy	

	 Notificatio
n	Adapter	

No	 -	 -	 -	

HEALTHeID
Integration Guide

8 of 59

eIDAS	
HProxy	

Yes	 https://<hostname/ip>:<port>/eidas-
hproxy/eidas-hproxy/metadata	

eIDAS	
Node	or	
National	
Adapter	

1-way	
SSL/TLS	

https://<hostname/ip>:<port>/eidas-
hproxy/eidas-hproxy/AuthResponse	

eIDAS	
Node	or	
National	
Adapter	

https://<hostname/ip>:<port>/eidas-
hproxy/eidas-hproxy/authentication	

Workflow	
Manager	

eIDAS	
National	
Adapter	

-	 -	 -	 -	

eIDAS	
National	
Adapter	Stub	

-	 -	 -	 -	

NCP	HProxy	 Yes	 https://<hostname/ip>:<port>/healtheid
-ncp-hproxy/ncphproxy/{country-code}	

Workflow	
Manager	

1-way	
SSL/TLS	

NCP	
National	
Adapter	

No	 -	 -	 -	

OpenNCP	
Client	
Connector	

-	 -	 -	 -	

OpenNCP	
Gateway	

-	 -	 -	 -	

	
As	for	the	total	number	of	certificates	needed,	it	depends	on	the	deployment	choice	
of	 the	 MS.	 Since	 the	 components	 are	 loosely	 coupled,	 they	 can	 be	 deployed	 in	
separate	 infrastructures	 (e.g.,	 belonging	 to	 different	 organizations)	 or	 all	 in	 the	
same.	It	 is	highly	recommended	that	the	certificates	contain	a	Subject	Alternative	
Name	attribute:	although	the	source	code	doesn’t	explicitly	perform	such	check,	the	
used	libraries	demand	the	existence	of	such	attribute.	
At	 application	 level,	 the	HEALTHeID	 Connector	makes	 use	 of	 a	 signed	 Json	Web	
Token	(JWT)	for	authorization	purposes.	More	details	on	its	usage	and	configuration	
of	 its	 symmetric	 cryptography	 parameters	 can	 be	 found	 on	 the	 section	 HeID	
Connector.	

HEALTHeID
Integration Guide

9 of 59

1.5 HP I/O

To	take	advantage	of	HEALTHeID-enhanced	OpenNCP	Portal,	the	version	provided	
by	the	HEALTHeID	project	must	be	deployed	by	the	country	(openncp-portal	WAR	
file).	
In	order	 to	enable	 the	HEALTHeID	 features	 in	 the	OpenNCP	Portal,	 the	 following	
properties	must	be	set	 in	the	properties	database	schema	(ehealth_properties)	of	
the	OpenNCP,	in	the	table	EHNCP_PROPERTY:	

NAME	 IS_SMP	 VALUE	

HEALTHEID_ENABLED	 b’0’	 true	

HEALTHEID_URL		 b’0’	 https://<hostname/ip>:<port>/healtheid-
connector	

● HEALTHEID_ENABLED:	 enables/disables	 the	 HEALTHeID	 features	

(true/false)	
● HEALTHEID_URL:	 HEALTHeID	 Connector	 services	 endpoint	 (HTTPS).	 The	

hostname/IP	and	port	are	those	of	the	environment	where	the	HEALTHeID	
Connector	 runs.	 The	 value	 of	 this	 property	 is	 communicated	 to	 the	 HeID	
Client	component.	

Note:	these	properties	were	stored	in	the	ehealth_properties	schema	of	the	NCP	for	
ease	of	use	and	due	to	the	tight	coupling	between	the	OpenNCP	Portal	and	the	NCP	
itself.	Other	portals	are	free	to	store	these	properties	using	other	mechanisms	(e.g.,	
a	dedicated	schema,	a	properties	file,	etc),	given	that	such	portals	 can	access	them.	 	
 This	 version	 of	 the	 OpenNCP	 Portal	 can	 still	 be	 deployed	 and	 used	 in	 the	
current	eHDSI	scenario	without	adding	these	2	properties	to	the	schema:	the	end-
user	won’t	notice	any	difference.	

HEALTHeID
Integration Guide

10 of 59

This	 version	 of	 the	 OpenNCP	 Portal	 expects	 the	 certificate	 chain	 protecting	 the	
HEALTHEID_URL	 endpoint	 to	 be	 included	 in	 the	 truststore	 configured	 in	
TRUSTSTORE_PATH	 and	 TRUSTSTORE_PASSWORD	 properties	 of	 the	
ehealth_properties	schema.	
Once	the	features	are	enabled,	the	country	page	in	the	OpenNCP	Portal	must	display	
a	radio-button	to	switch	between	the	current	eHDSI	scenario	(“Search	Patient”)	or	
the	 HEALTHeID	 one	 (“Create	 Encounter”),	 as	 depicted	 in	 Figure	 2.	 Once	 in	 the	
“Create	 Encounter”	 screen,	 the	 Portal	 keeps	 polling	 the	 HEALTHeID	 Connector	
every	15s,	waiting	for	new	information	to	be	displayed	to	the	HP.	

Figure 2 – HEALTHeID-enhanced OpenNCP Portal

1.6 HeID Client

HEALTHeID
Integration Guide

11 of 59

HEALTHeID	 Connector	 Client	 is	 a	 component	 that	 has	 the	 objective	 to	 ease	 the	
communication	with	the	HEALTHeID	Connector	services,	and	it	is	intended	to	work	
not	only	in	an	OpenNCP	Portal	instance,	but	in	another	Java	environments.	Keep	in	
mind	the	 further	documentation	to	avoid	compatibility	 issues.	This	component	 is	
packaged	as	a	JAR	file	(healtheid-client).	
	
These	instructions	will	present	a	guide	on	how	to	integrate	HEALTHeID	Client.	
	
Prerequisites:	Java	1.8	and	Maven.	
Installing:	 pull	 the	 project	 to	 your	 working	 directory,	 and	 add	 the	 following	
dependency	to	POM.	
	
<dependency>	
	 <groupId>eu.europa.ec.healtheid</groupId>	
	 <artifactId>healtheid-client</artifactId>	
	 <version>1.0.0-SNAPSHOT</version>	
</dependency>	
	

HEALTHeID
Integration Guide

12 of 59

	
	
	
Keep	 in	 mind	 that	 incompatibilities	 may	 occur	 with	 existing	 dependencies.	 It	 is	
advised	 to	 execute	 "mvn	 dependency:tree"	 when	 integrating	 HEALTHeID	 Client	
when	a	conflict	occurs	to	check	for	incompatibilities,	and	to	visit	Maven	Central	to	
check	this	dependencies	requirements.	
	
Example	case	of	incompatibility:	The	following	error	occurred	when	instantiating	
a	 RestTemplate	 object	 from	 spring	 boot	 class,	 after	 the	 first	 integration	 with	
OpenNCP	 Portal,	 indicating	 an	 incompatibility	 with	 an	 existing	 Jackson	 Core	
dependency:	
	
|	 ERROR	 com.liferay.faces.bridge.context.ExceptionHandlerAjaxImpl	 -	
java.lang.NoSuchMethodError:	
com.fasterxml.jackson.core.JsonFactory.requiresPropertyOrdering()Z	|	|:---	|	
	
After	 getting	 the	 dependency	 tree	 of	 the	 project,	 it	 was	 found	 that	 the	 existing	
jasperreports	dependency	also	imported	an	outdated	version	of	Jackson	Core,	so	an	
exclusion	was	applied.	
	

HEALTHeID
Integration Guide

13 of 59

How	 to	 deploy	 in	 OpenNCP	 Portal:	 to	 deploy	 in	 OpenNCP	 Portal,	 follow	 the	
instructions	in	the	"Installing"	section	and	run	"mvn	dependency:tree"	in	the	root	of	
the	project.	Check	for	all	the	dependencies	that	import	Jackson	Core,	and	add	the	
following	exclusions	to	each	one:	
	
<exclusion>

 <artifactId>jackson-databind</artifactId>

 <groupId>com.fasterxml.jackson.core</groupId>

</exclusion>

<exclusion>

 <artifactId>jackson-annotations</artifactId>

 <groupId>com.fasterxml.jackson.core</groupId>

</exclusion>

<exclusion>

 <artifactId>jackson-core</artifactId>

 <groupId>com.fasterxml.jackson.core</groupId>

</exclusion>

	
Running	the	tests:	to	run	the	tests,	execute	"mvn	test"	on	project	main	directory.	
	
The	component	is	built	with:	
SpringBoot	-	Framework	used	to	send	messages	to	HEALTHeID	Connector	
Maven	-	Dependency	Management	

1.7 HeID Connector

HEALTHeID
Integration Guide

14 of 59

	
This	section	goes	into	the	different	sub-components	of	the	HeID	Connector.	

	

1.7.1 Workflow Manager

	

The	 Workflow	 Manager	 (WM)	 handles	 and	 orchestrates	 all	 the	 Patient	 and	
Healthcare	 Professional	 (HP)	 interactions	 during	 the	 Patient	 Authentication	
process,	 in	 order	 to	 provide	 a	 strong	 identification	 ensured	 by	 the	 eIDAS	

HEALTHeID
Integration Guide

15 of 59

infrastructure.	 To	 perform	 a	 successful	 Patient	 authentication	 -	 we	 assume	 that	
Healthcare	Professional	is	already	authenticated	-,	the	WM	has	to	interact	with	three	
components:	

1) HeID	Client,	which	submits	the	HP	requests	towards	WM.	

2) Patient	Data	I/O,	that	reports	Patient	decisions	and	interactions.	

3) eIDAS-HProxy,	 that	 generates	 the	 eIDAS	 authN	 request	 towards	 the	 eIDAS	
world	and	then	elaborate	the	eIDAS	assertion.	

For	this	reason,	the	structure	of	the	HeID	Connector	includes	a	Spring	Controller	for	
each	 component,	 respectively	 the	 Heid-Client	 Controller,	 Patient	 Controller	 and	
eIDAS-HProxy	Controller.	

	
	
	
	
	
	
	
	
	
	

	
HeidClient-Controller	 handles	 all	 the	 requests	 coming	 from	 the	 HeidClient	
component	 (driven	 by	 HP	 actions).	 This	 controller	 provides	 three	 endpoints	 to	
satisfy	HP	requests:	
- encounter/createEncounter:	to	create	an	Encounter	between	HP	and	Patient.	The	
encounter	 is	 given	 by	 a	 Json	 Web	 Token	 that	 will	 be	 send	 to	 both,	 as	 HTTP	
response	 to	 the	 former	 and	 via	 email/sms	 to	 the	 latter	 (inside	 the	
“acceptEncounter	 link”).	
Note	 that	 the	 JWT	 token,	 also	 called	 EncounterID,	 will	 be	 used	 in	 the	 HTTP	
Authorization	Header	as	Authorization	token.	

- encounter/requestPatientData:	used	by	HeId-Client	to	check	if	eIDAS	patient	data	
are	available.	A	204	NO	CONTENT	will	be	 send	as	 response	 if	data	are	not	yet	
ready,	so	the	Heid-Client	will	have	to	try	again	later.	

HEALTHeID
Integration Guide

16 of 59

- encounter/receiveNotice:	 through	 this	 endpoint	 the	 HeID-Client	 sends	
notifications	about	what	is	happening	in	the	OpenNCP	world	with	the	outcome	of	
each	process	(XCPD,	eP-PS,	eD).	The	Workflow	Manager	is	responsible	to	forward	
the	notice	to	the	Patient.	

	
Some	details	about	the	Patient	Controller:		
- /patientEncounter/acceptEncounter/{token}	 :	 	 called	 by	 the	 Patient	 when	 he	
clicks	on	the	link.	The	token	is	the	JWT	token	(EncounterID).		

- /patientEncounter/acceptEncounter:	 redirects	 the	 patient	 to	 the	 eIDAS	
authentication.	

- /patientEncounter/patientAcknowledge:	called	to	show	the	Patient	Information	
Notice	(PIN)	to	Patient.	

- /patientEncounter/acknowledge:	it	accepts	the	patient	acknowledge.	
- /patientEncounter/patientConsent:	 collection	 of	 patient	 consent.	 (implemented	
but	not	used)	

- /patientEncounter/additionalPatientData:	 if	 the	 eIDAS	 authentication	 does	 not	
provide	all	the	necessary	data,	the	patient	can	add	them	by	hand.	

	
The	eIDAS-Proxy	Controller	receives	the	Patient	eIDAS	attributes	 from	the	eidas-
HProxy,	after	a	successful	authentication	by	patient	on	eIDAS.	

- /heidconnector/acceptPatientAuthN	:	used	by	eidas-HProxy	to	communicate	the	
eIDAS	map	attributes	to	the	workflow	manager.	

	
Workflow	Manager:		
- Creates	 the	 encounter	 	 (generates	 the	 EncounterID	 between	 Patient	 and	 HP)	
(EncounterID	=	JWT	Token)	

- Validates	the	JWT	token	

- Redirects	the	patient	towards	eIDAS-HProxy	

- Stores	the	eIDAS	attributes	for	a	limited	period	of	time	(waiting	the	HeID-Client	
data	request)	

- Contacts	 the	 NCP	 HProxy	 at	 the	 endpoint	 hostname-
hproxy/ncphproxy/{country}	to	obtain	the	health-eid	country	configuration	and	

HEALTHeID
Integration Guide

17 of 59

maps	the	eidas	attributes	with	OpenNCP	attributes.	The	{country}	parameter	is	
the	country	value	for	which	the	configuration	is	needed	(patient’s	country)	

- Asks	and	stores	the	acknowledgement	in	DB	

- Sends	notification	to	patient	about	what	is	happening	in	OpenNCP	(XCPD,	eP/PS,	
eD)	

The	Json	Web	Token	is	a	secure	token	used	to	represent	and	uniquely	identify	the	
encounter	between	Patient	and	HP.	Note	that	this	token	correspond	to	a	string	in	
the	 following	 format	 aaa.bbb.ccc,	 where:	
	
	 -	aaa	=	JWT	header	

	 -	bbb	=	JWT	payload	

	 -	ccc	=	Workflow	Manager	signature	=	HMAC-SHA256(
	 	 	 	 	 	 base64UrlEncode(header)	+	.	+	
	 	 	 	 	 	 base64UrlEncode(payload),	
	 	 	 	 	 	 MY_SECRET_KEY)	
	 	 	 	 	 =	HMAC-SHA256(aaa.bbb,	MY_SECRET_KEY)	

	 	 	 	 	
JWT	header,	JWT	payload	and	WM	signature	are	base64	encoded.	
	
Example	of	JWT	token	(base64	encoded):		
eyJhbGciOiJIUzI1NiJ9.eyJqdGkiOiIxYzE0YTE5MC0wZmFjLTRlMTktYjk0Yi0yZGVi
Nzg3ODYwZjkiLCJleHAiOjE1NjMyMzYzMjEsInN1YiI6IklUIn0.foIhtBB2qH-
vyKGOFcivYc54VeAVhg6GtPgaoEi68IA	

	
The	same	token,	but	decoded:	
	{“alg”:"HS256"}	{“jti":"1c14a190-0fac-4e19-b94b-
2deb787860f9","exp":1563236321,"sub":"IT"}	m\^X`kO??	
	
The	JWT	header	contains	the	algorithm	used	to	sign	the	token	(in	this	case	
HMAC	with	SHA-256).	
The	JWT	payload	contains	a	JwtTokenId	that	is	a	unique	id,	an	expiration	date	
and	a	subject	attribute	that	correspond	to	the	Patient	Country.	
	
The	Workflow	Manager	can	verify	the	integrity	of	the	token	checking	the	

HEALTHeID
Integration Guide

18 of 59

signature;	in	practice,	it	compute	the	HMAC-SHA256(aaa.bbb,	MY_SECRET_KEY	
)	of	the	token	just	received,	and	then	checks	if	this	last	HMAC	is	equal	to	the	“ccc”	
token	value.	If	the	two	values	are	equals,	the	WM	knows	that	this	token	was	
generated	by	itself	and	then	the	token	is	accepted	(if	not	expired);	otherwise	the	
token	is	rejected.	

	

Security	Considerations	

Please	note	that	the	JWT	token,	used	for	creating	the	encounter,	is	also	used	as	an	
authentication	 token	 by	 the	 HeID	 Client.	 Therefore	 the	 Workflow	 Manager	
validates	the	HeID	client	requests	checking	this	token.	But	a	problem	occurs	in	the	
use	 of	 this	 token	 as	 authentication	 header:	 it	 is	 the	 same	 for	 each	 request	
performed	by	the	HeID,	and	 it	 is	never	changed.	This	 fact	makes	the	connector	
vulnerable	 to	 replay	 attacks.		
To	avoid	this	problem,	it	is	advisable	to	use	a	NONCE	(a	number,	generally	random	
or	pseudo-random,	that	has	a	unique	use)	in	the	authentication	header	instead	
of	 the	 jwt	 token.	
Note	also	that	in	our	development,	we	exploit	the	use	of	authentication	header	to	
validate	the	request	and	also	to	identify	the	encounter	(because	the	token	is	the	
same	and	corresponds	to	the	encounterID).	

Therefore,	to	improve	the	current	solution,	this	is	what	should	happen:	

1. the	workflow	manager	creates	the	encounter,	using	a	jwt	token	as	encounterID	
(not	changed)	

2. The	workflow	manager	sends	the	encounterID	to	HeID	client	with	a	nonce	

3. At	 the	 next	 request,	 the	HeID	 client	 uses	 the	nonce	 as	 authentication	 token	
inside	 the	 HTTP	 authentication	 header,	 and	 inserts	 the	 encounterID	 in	 the	
HTTP	body	

4. The	workflow	manager	(WM)	receives	the	message	and	checks	the	nonce.	If	
the	 nonce	 is	 valid,	 the	WM	 reads	 the	 encounterID	 from	 the	HTTP	body	 and	
processes	the	request.	After	that,	a	new	nonce	is	sent	to	the	HeID	client	inside	
the	response;	in	this	way	it	can	use	the	new	nonce	in	the	next	request.	

This	approach	should	be	used	also	in	the	interactions	with	the	patient.	

	

HEALTHeID
Integration Guide

19 of 59

Configurations	

Some	 details	 about	 the	 several	 configurations	 needed,	 starting	 with	 the	 HeID	
Connector:	

Prerequisites:	
	 -	MySQL	5.x,	with	a	schema	named	“ehealth_healtheid”	
	 -	Apache	Tomcat	8.5.x	

MySQL	database	is	not	mandatory	and	the	user	can	configure	this	aspect	according	
to	 his	 preferences.	 It	 is	 also	 possible	 to	 use	 multiple	 and	 separate	 databases	
according	to	the	Spring	JPA	configuration.	The	ehealth_healtheid	schema	tables	will	
be	created	upon	deployment	of	this	component	on	Tomcat.	Following	are	the	tables	
that	are	part	of	this	schema:	

• eidas_attribute:	 stores	 information	 of	 the	 eIDAS	 assertion	 of	 a	 specific	
encounter;	

• eidas_ehealth_configuration:	 stores	 information	 about	 the	 eIDAS	 eHealth	
Configuration	needed	in	a	specific	encounter;	

• encounter:	stores	encounter-specific	information;	

• search_maskText_field:	stores	information	about	a	text	field	declared	in	the	
search	mask	of	a	specific	encounter;	

• search_mask_birth_date:	stores	information	about	a	birth	date	field	declared	
in	the	search	mask	of	a	specific	encounter;	

• search_mask_id:	stores	information	about	an	identifier	field	declared	in	the	
search	mask	of	a	specific	encounter;	

• search_mask_sex:	stores	information	about	a	sex	field	declared	in	the	search	
mask	of	a	specific	encounter;	

Go	to	tomcat_folder/conf/server.xml	and	add	the	Global	JNDI	Resource	inside	the	
<GlobalNamingResources>	element	for	the	MySQL	configuration:	

	
	<Resource	name="jdbc/ConfHeiD"	auth="Container"	type="javax.sql.DataSource"	

	 	factory="org.apache.tomcat.jdbc.pool.DataSourceFactory"	
														maxTotal="20"	maxIdle="10"	
														driverClassName="com.mysql.cj.jdbc.Driver"	

HEALTHeID
Integration Guide

20 of 59

	 	url="jdbc:mysql://localhost:3306/ehealth_healtheid?useTimezone=true"	
														username="username"	
														password="password"	
	/>	
	
Then	go	to	tomcat_folder/conf/context.xml	and	define	the	resource	link	inside	the	
Context	element:		
<ResourceLink	global="jdbc/ConfHeiD"	name="jdbc/ConfHeiD"	
type="javax.sql.DataSource"/>	

	

The	following	dependency	was	added	for	including	the	MySQL	Connector/J	driver,	
in	order	to	obtain	the	JDBC	APIs	for	communicating	with	the	relational	database.		

 <dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 </dependency>

This	component	 is	packaged	as	a	deployable	WAR	 file	 (healtheid-connector).	For	
testing	purposes,	it	can	be	launched	as	a	standalone	Spring	Boot	JAR	file	containing	
an	embedded	Tomcat.	

Its	 behavior	 is	 managed	 by	 a	 set	 of	 properties	 within	 its	 self-contained	
default.properties	file.	

To	test	the	connector	in	localhost:8080,	set	in	the	default.properties	file	the	
“server.url=localhost”	and	“server.port=8080”.	
To	configure	JWT	Token,	specify	the	“jwt.secret“	value	and	the	“jwt.expiration”	
value	in	order	to	use	your	custom	private	secret	and	to	set	the	expiration	time	of	
the	token	(in	seconds).	
If	you	want	test	the	connector	without	SSL,	you	have	to	set	server.ssl.enabled=false	
in	the	default.properties	file;	otherwise	you	set	the	property	to	true	and	configure	
the	following	ssl	properties.	
Change	the	component	base	URL	in	default.properties	according	with	your	
deployment.	

The	default.properties	file	contains	the	following	objects:	

Property	 Value	 Description	

HEALTHeID
Integration Guide

21 of 59

server.port	 443	 Listening	Port.	This	is	the	port	
contained	 in	 the	URL	 sent	 to	
the	 patient.	 It’s	 also	 the	 port	
used	when	 the	component	 is	
run	as	a	standalone	JAR	file.	

server.url	 localhost	 Url	 basename.	 This	 is	 the	
hostname	 contained	 in	 the	
URL	 sent	 to	 the	 patient.	 It’s	
also	the	hostname	used	when	
the	 component	 is	 run	 as	 a	
standalone	JAR	file.	

server.protocol	 https	 Defines	 as	 HTTPS	 both	 the	
URL	 received	 by	 the	 patient	
as	 well	 as	 the	 endpoints	
exposed	when	the	component	
is	run	as	a	standalone	JAR	file.	
It	must	be	“https”.		

server.ssl.enabled	 true	 To	 enable/disable	 SSL	
connections.	 If	 used,	 it	
should	be	“true”.	Only	used	in	
the	case	the	component	is	run	
as	 a	 standalone	 JAR	 file.	
Otherwise	 it	 can	 be	 ignored,	
given	that	such	configuration	
is	provided	by	the	application	
server	where	it’s	deployed.	

security.require-ssl	 true	 Requires	 SSL.	 If	 used,	 it	
should	be	“true”.	Only	used	in	
the	case	the	component	is	run	
as	 a	 standalone	 JAR	 file.	
Otherwise	 it	 can	 be	 ignored,	
given	that	such	configuration	
is	provided	by	the	application	
server	where	it’s	deployed.	

server.ssl.key-store-type	 JKS	 The	 format	used	 for	 the	
keystore.	 It	 could	be	 set	
to	 JKS	 in	 case	 it	 is	a	 JKS	
file.	Only	used	in	the	case	the	

HEALTHeID
Integration Guide

22 of 59

component	 is	 run	 as	 a	
standalone	 JAR	 file.	
Otherwise	 it	 can	 be	 ignored,	
given	that	such	configuration	
is	provided	by	the	application	
server	where	it’s	deployed.	

server.ssl.key-store	 /home/user/health-eid/healtheid-
connector/keystore/keystore.jks	

The	 path	 to	 keystone	
containing	 the	
certificate.	Only	used	in	the	
case	the	component	is	run	as	
a	 standalone	 JAR	 file.	
Otherwise	 it	 can	 be	 ignored,	
given	that	such	configuration	
is	provided	by	the	application	
server	where	it’s	deployed.	

server.ssl.key-store-
password	

password	 Password	 used	 to	
generate	 the	 certificate.	
Only	 used	 in	 the	 case	 the	
component	 is	 run	 as	 a	
standalone	 JAR	 file.	
Otherwise	 it	 can	 be	 ignored,	
given	that	such	configuration	
is	provided	by	the	application	
server	where	it’s	deployed.	

server.ssl.key-alias	 healtheid-connector	 The	alias	mapped	to	the	
certificate.	Only	used	in	the	
case	the	component	is	run	as	
a	 standalone	 JAR	 file.	
Otherwise	 it	 can	 be	 ignored,	
given	that	such	configuration	
is	provided	by	the	application	
server	where	it’s	deployed.	

server.tomcat.remote-ip-
header	

x-forwarded-for	 Name	 of	 HTTP	 header	 from	
which	 the	 remote	 IP	 is	
extracted.	 If	 used,	 it	must	 be	
“x-forwarded-for”.	 Only	 used	
in	 the	case	 the	component	 is	
run	 as	 a	 standalone	 JAR	 file.	
Otherwise	 it	 can	 be	 ignored,	
given	that	such	configuration	

HEALTHeID
Integration Guide

23 of 59

is	provided	by	the	application	
server	where	it’s	deployed.	

server.tomcat.protocol-
header	

x-forwarded-proto	 Enable	 setting	 the	 header	 of	
incoming	protocol.	 If	 used,	 it	
must	be	“x-forwarded-proto”.	
Only	 used	 in	 the	 case	 the	
component	 is	 run	 as	 a	
standalone	 JAR	 file.	
Otherwise	 it	 can	 be	 ignored,	
given	that	such	configuration	
is	provided	by	the	application	
server	where	it’s	deployed.	

server.tomcat.redirect-
context-root	

true	 Whether	 requests	 to	 the	
context	 root	 should	 be	
redirected	 by	 appending	 a	 /	
to	the	path.	If	used,	it	must	be	
“true”.	Only	 used	 in	 the	 case	
the	 component	 is	 run	 as	 a	
standalone	 JAR	 file.	
Otherwise	 it	 can	 be	 ignored,	
given	that	such	configuration	
is	provided	by	the	application	
server	where	it’s	deployed.	

jwt.secret	 shared-secret-to-sign-and-verify-
JWT-token-change-it	

Shared	 secret	 (the	 same	one	
that	 is	used	 in	eIDAS	HProxy	
configurations).	 Should	 be	
redefined	 by	 the	 MS	 and	
configured	accordingly	in	the	
other	components	using	it.	

jwt.expiration	 600	 Expiration	 time	 of	 the	 jwt	
token	 (in	 seconds)	 [600	
seconds=	10	minutes].	

redirect.to.eidasHProxy	 http://<hostname>:<port>/eidas-
hproxy/eidas-
hproxy/authentication	

eIDAS	HProxy	endpoint.	

ncphproxy.url	 http://<hostname>:<port>/healthei
d-ncp-hproxy/ncphproxy	

NCP	HProxy	endpoint.	

HEALTHeID
Integration Guide

24 of 59

spring.jpa.hibernate.ddl-
auto	

update	 Enables	 Hibernate	 to	
create	 the	
ehealth_healtheid	 schema	
tables	upon	deployment	
of	the	artefact.	

spring.jpa.generate-ddl	 true	 Switches	on/off	the	JPA	DDL	
generation.	

hibernate.dialect	 org.hibernate.dialect.MySQL5Dialec
t	

Database	SQL	Dialect.	May	
need	to	be	changed	according	
to	the	specific	database	(and	
version)	used.	

spring.datasource.jndi-
name	

java:comp/env/jdbc/ConfHeiD	 Externalizes	 JDNI	
configuration	 declared	
in	Tomcat.	

acknowledge.path	 classpath:acknowledge/default.htm
l	

Classpath	 for	 the	
acknowledge	HMTL	page.	

pin.reference.version	 1.0.0.RC1	 Acknowledged	PIN-B	version.	
It	 must	 be	 redefined	 by	 the	
MS,	 according	 to	 the	 version	
of	the	PIN-B	they’re	using.	

name.sp	 <Country-B>	Service	Provider	 The	name	of	the	country-B	
Service	Provider.	

	

There	are	additional	properties	that	configure	the	Notification	Adapter.	They’ll	be	
explained	in	section	1.7.5.	

The	following	instructions	allow	customization	of	the	previous	configurations.	

Add	the	following	configuration	in	Tomcat's	context.xml:	

<Parameter	name="healtheid-connector.properties"	
value="/path/to/tomcat/properties/healtheid-connector.properties"/>	

Where:	

HEALTHeID
Integration Guide

25 of 59

• name:	it	must	be	healtheid-connector.properties;	

• value:	absolute	path	to	a	custom	properties	file,	e.g.,	can	be	within	a	newly	
created	properties	 file	 inside	Tomcat	 (but	 this	 is	not	mandatory,	 it	 can	be	
anywhere	in	the	filesystem,	as	long	as	the	user	running	the	HeID	Connector	
has	sufficient	permissions	to	read	it).	

The	configurations	contained	in	healtheid-connector.properties	file	will	overwrite	
the	 default	 configurations	 provided	 by	 the	 default.properties	 file	 included	 in	 the	
component	 artefact.	 If	 this	 file	 doesn't	 exist,	 the	 default	 ones	 apply.	
	

	

HEALTHeID
Integration Guide

26 of 59

1.7.2 eIDAS-HProxy

After	 the	 patient	 clicks	 on	 the	 encounter	 link,	 he	 is	 redirected	 to	 eIDAS-HProxy,	
which	 has	 to	 create	 an	 eIDAS	 SAML	 Authentication	 Request	 towards	 the	 eIDAS	
world.	Before	doing	that,	the	eIDAS-HProxy	receives	the	JWT	token	(EncounterID)	
as	a	parameter	from	the	WM	so	that	it	can	read	the	Citizen	Country	attribute	from	
this	token.	Then	it	builds	the	eIDAS	AuthN	request	generating	a	random	SAML	ID.	
This	SAML	ID	identifies	the	eIDAS	request,	and	it	is	useful	to	map	the	corresponding	
answer.	 However,	 the	 eIDAS	 HProxy	 must	 also	 map	 the	 encounter	 with	 the	
corresponding	 eIDAS	 SAML	 request.	 For	 this	 reason,	 it	 uses	 a	 HashMap	
<encounterID,	 Saml-ID>.	 When	 the	 authentication	 request	 is	 created,	 the	 eidas-
hproxy	 adds	 the	 entry	 <encounter-id,saml-id>	 in	 the	 HashMap	 and	 sends	 the	
request	toward	eIDAS.		

In	such	way,	when	the	eIDAS	Assertion	will	come,	the	SAML	InResponseTo	attribute	
will	contain	the	Saml-ID;	from	this	value,	the	system	can	recover	the	encounterID	
stored	in	the	HashMap	and	link	SAML	Response,	containing	the	patient	attributes,	
with	the	encounter,	which	identifies	the	patient-HP	relationship.	

Please	 note	 that	with	 this	 approach,	 the	 eIDAS-HProxy	 has	 to	 know	 the	 hidden	
secret	 wherewith	 the	 token	 is	 encrypted.	 Another	 solution	 could	 be	 to	 use	
asymmetric	 cryptography	 to	 sign	 the	 JWT	 token,	 rather	 than	 a	 shared-secret	
solution	(this	requires	some	changes	in	the	token	generation).		

The	eIDAS	HProxy	component	is	based	on	version	2.2.0	of	eIDAS	sources	in	order	to	
use	OpenSAML	 v3,	 instead	of	 the	 deprecated	 v2	of	 eIDAS	1.4.3.	 Even	 though	 the	
component	is	bundled	as	a	separate	component,	this	allow	its	coexistence	with	other	
components	using	the	same	version	of	this	library.	The	sub-components	of	eIDAS	
HProxy	are	based	on	version	1.4.3	of	eIDAS,	thus	compatible	and	in	 line	with	the	
configurations	from	such	version.	

HEALTHeID
Integration Guide

27 of 59

Please	note	that	eIDAS-HProxy	needs	to	read	the	JWT	Token	to	discover	the	Patient	
Country,	 so	 the	property	described	below	 for	 the	 JWT	Token	 secret	must	be	 the	
same	that	was	put	in	the	HeID-connector	configuration	file.		

The	eIDAS	HProxy	component	is	packaged	as	a	deployable	WAR	file	(eidas-hproxy).	
For	 testing	 purposes,	 it	 can	 be	 launched	 as	 a	 standalone	 Spring	 Boot	 JAR	 file	
containing	an	embedded	Tomcat.	

- Prerequisites
1) Java	1.8	and	Maven	
2) Firewall	 configured	 in	 order	 to	 accept	 incoming	 connections	 on	 ports	 80	

(HTTP)	and	443	(HTTPS)	

- Installation
1) Download	and	extract	EIDAS-Sources	v2.2.0	from	

https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eIDAS-
Node+version+2.2	

2) Change	directory	to	EIDAS-Parent	inside	(after	extracting	EIDAS-Sources-
2.2.0.zip)	

3) Execute	the	following	command	in	order	to	install	the	necessary	
eu.eidas:eidas-saml-engine	artifacts	in	the	local	repository.	
mvn	clean	install	-DskipTests	

4) Change	directory	to	eidas-hproxy	(inside	the	health-eid	project	directory)	
git	clone	https://ec.europa.eu/cefdigital/code/scm/ehncp/health-eid.git	
git	checkout	develop	

5) Run	mvn	clean	install	-DskipTests	in	order	to	build	the	application	
6) The	generated	WAR	file	will	be	located	in	the	eidas-hproxy/target	directory	

for	deployment	to	tomcat.	
7) It	is	recommended	to	setup	tomcat	to	use	an	SSL/TLS	certificate		

- Configuration
This	 component's	 behavior	 is	 managed	 by	 a	 set	 of	 properties	 within	 its	 self-
contained	default.properties	file.	The	following	instructions	allow	customization	of	
such	configurations.	
Add	the	following	configuration	in	Tomcat's	context.xml	(the	file	 is	 located	in	the	
conf	folder	of	the	local	Tomcat	installation):	
<Parameter	name="eidas-hproxy.properties"	
value="/path/to/tomcat/properties/eidas-hproxy.properties"/>	
Where:	

• name:	it	must	be	eidas-hproxy.properties;	

HEALTHeID
Integration Guide

28 of 59

• value:	absolute	path	to	a	custom	properties	file,	e.g.,	can	be	within	a	newly	
created	properties	 file	 inside	Tomcat	 (but	 this	 is	not	mandatory,	 it	 can	be	
anywhere	in	the	filesystem,	as	long	as	the	user	running	the	eIDAS	HProxy	has	
sufficient	permissions	to	read	it).	

The	 configurations	 contained	 in	 eidas-hproxy.properties	 file	 will	 override	 the	
default	 configurations	 provided	 by	 the	 default.properties	 file	 included	 in	 the	
component	artifact.	 If	 this	 file	doesn't	exist,	 the	default	ones	apply.	The	following	
table	provides	information	on	the	configuration	properties:	

Name	 Value	 Description	

server.port	 8084	 TCP	port	on	which	the	
service	is	run	(only	
used	for	testing	when	
run	as	a	standalone	
application	with	
embedded	tomcat).	

jwt.secret	 shared-secret-to-sign-
and-verify-JWT-token-
change-it	

Secret	key	to	verify	the	
JWT	token	sent	by	
workflow	manager.	
(The	same	one	that	is	
used	in	HeID	Connector	
configuration)	

url.heidConnector.acceptPa
tientAuth	

http://[ip]:[port]/
healtheid-connector	
/heidconnector/accept
PatientAuthN	

URL	to	redirect	eIDAS	
result	towards	
workflow	manager	
(check	port	in	
healtheid-connector	
conf	file)	

eidas.path	 [PATH]	 File	system	path	
pointing	to	eIDAS	
configuration	folder	
(containing	Signing	and	
Encryption	settings	and	
keystore).	Note:	needs	
to	end	with	a	slash	(/).	

sp.metadata.url	 http://[ip]:[port]/eidas
-hproxy/eidas-
hproxy/metadata	

The	local	endpoint	
metadata	URL	as	it	is	
visible	from	the	
Internet.		

sp.country	
	

CA	 The	code	of	the	country	
in	which	the	component	
is	deployed	

HEALTHeID
Integration Guide

29 of 59

country.metadata.url	 http://[ip]:[port]/Conn
ectorResponderMetada
ta	

eIDAS	Connector	(or	
national	adapter)	
metadata	URL	

sp.return	 http://[ip]:[port]/eidas
-hproxy/eidas-
hproxy/AuthResponse	

The	local	endpoint	(SP)	
return	page	URL	as	it	is	
visible	from	the	
Internet.	

country.nameid.format	 urn:oasis:names:tc:SAM
L:1.1:nameid-
format:unspecified	

This	sets	the	
<saml2p:NameIDPolicy	
Format>	entry	in	the	
SAML	Authentication	
request	message.	It	is	
used	to	specify	the	
format	in	which	the	
NameID	should	be	
received	in	the	Authn	
Response	message.	
Change	the	value	if	
required	by	the	eIDAS	
Connector.	Other	
possible	values	are:	

• urn:oasis:name
s:tc:SAML:2.0:
nameid-
format:persist
ent	

• urn:oasis:name
s:tc:SAML:2.0:
nameid-
format:transie
nt	

• urn:oasis:name
s:tc:SAML:1.1:
nameid-
format:persist
ent	

provider.name
sp.type
contact.support.email
contact.support.company
contact.support.givenname
contact.support.surname

DEMO-SP
Public
contact.support@sp.eu
eIDAS SP Operator
Jean-Michel
Folon

SP	and	contact	
information	to	be	
displayed	on	the	
metadata	Page	

HEALTHeID
Integration Guide

30 of 59

contact.support.phone
contact.technical.email
contact.technical.company
contact.technical.givenname
contact.technical.surname
contact.technical.phone

+555 123456
contact.support@sp.eu
eIDAS SP Operator
Alphonse
Michaux
+555 123456

sp.metadata.retention	 86400	 The eIDAS connector
should re-load the SP
metadata page if the
following time (in
seconds) has elapsed	

encryption.algorithm.whiteli
st	

http://www.w3.org/2009/xmlenc
11#aes128-
gcm;http://www.w3.org/2009/x
mlenc11#aes256-
gcm;http://www.w3.org/2009/x
mlenc11#aes192-gcm	

Contains	the	encryption	
algorithms	allowed	in	
the	responses	received.	

signature.algorithm.whitelist	 http://www.w3.org/2001/04/xml
dsig-more#rsa-
sha256;http://www.w3.org/2001
/04/xmldsig-more#rsa-
sha384;http://www.w3.org/2001
/04/xmldsig-more#rsa-
sha512;http://www.w3.org/2001
/04/xmldsig-more#rsa-
ripemd160;http://www.w3.org/2
001/04/xmldsig-more#ecdsa-
sha256;http://www.w3.org/2001
/04/xmldsig-more#ecdsa-
sha384;http://www.w3.org/2001
/04/xmldsig-more#ecdsa-
sha512;http://www.w3.org/2007
/05/xmldsig-more#sha256-rsa-
MGF1

It	contains	OpenSAML's	
supported	signing	
algorithms,	separated	
by	";".	

eidas.protocol.version	 1.1	 Value	of	eIDAS	protocol	
version	followed	by	the	
SP.	When	not	empty,	the	
value	will	be	published	
in	the	SP's	metadata	
URL.	

eidas.application.identifier CEF:eIDAS-ref:1.4.3	 Value	of	eIDAS	protocol	
application	identifier	
relative	to	the	IdP	code	
and	version	number.	

HEALTHeID
Integration Guide

31 of 59

When	not	empty,	the	
value	will	be	published	
in	the	SP's	metadata	
URL.	

- eIDAS Specific Configuration
A	sample	configuration	folder	is	provided	along	with	the	component	which	should	
be	configured	according	to	the	requirements	of	the	eIDAS	Connector	(or	National	
Adapter	component).	The	folder	structure	contains	the	keystore	for	certificates,	as	
well	as	configuration	files	in	xml	format	which	are	described	below.	

Folder	structure	

eidas-demo-config/keystore/	 This	folder	contains	the	java	
keystore(s)	(in	JKS	or	P12	format)	
which	will	contain	the	certificate(s).	
The	default	password	is	“local-demo”.	

eidas-demo-config/server/sp/	 XML	files	for	configuring	Encryption,	
Signing	and	other	aspects	of	eIDAS	

	
XML	file	description	

EncryptModule_SP.xml	
	

This	file	is	used	to	select	the	keystore	
and	certificate	which	will	be	used	to	
decrypt	the	SAML	message	sent	from	
the	eIDAS	connector	(or	national	
adaptor)	

saml-engine-additional-attributes.xml	
	

Defines	eIDAS	Additional	attributes.	It	
is	not	necessary	to	make	any	changes	
to	this	file	

saml-engine-eidas-attributes.xml	
	

Defines	eIDAS	attributes.	It	is	not	
necessary	to	make	any	changes	to	this	
file	

SamlEngine_SP.xml	
	

SAML	constants	for	Authentication	
Requests	and	Responses.	It	is	not	
necessary	to	make	any	changes	to	this	
file	

SignModule_SP.xml	
	

This	file	is	used	to	select	the	keystore	
and	certificate	which	will	be	used	to	
sign	metadata	and	SAML	messages	

HEALTHeID
Integration Guide

32 of 59

SPSamlEngine.xml	 This	is	the	root	configuration	file	which	
links	the	rest	of	the	files.	It	is	not	
necessary	to	make	any	changes	to	this	
file	

New Keystore Setup
1) Create	the	file	named	openssl.cnf:

[req]
distinguished_name=req_distinguished_name

[req_distinguished_name]

[eidas_sign]
basicConstraints=critical,CA:FALSE
keyUsage=digitalSignature,nonRepudiation

[eidas_enc]
basicConstraints=critical,CA:FALSE
keyUsage=keyEncipherment

2) Run	the	following	commands	to	create	the	X.509	certificates	required	to	sign	
SAML	requests	and	responses
$ openssl ecparam -genkey -name secp384r1 -out priv/eidas-hproxy-sign.key
$ openssl req -x509 -new -key priv/eidas-hproxy-sign.key -sha512 \
 -out pub/eidas-hproxy-sign.pem -days 3650 \
 -config openssl.cnf -extensions eidas_sign \
 -subj "/C=IT/O=Politecnico di Torino/OU=HealtheID Test Infrastructure/CN=e
IDAS-HProxy SAML Signature"

to	encrypt	SAML	responses	
$ openssl req -x509 -nodes -newkey rsa:4096 -keyout priv/eidas-hproxy-enc.key
-sha512 \
 -out pub/eidas-hproxy-enc.pem -days 3650 \
 -config openssl.cnf -extensions eidas_enc \
 -subj "/C=IT/O=Politecnico di Torino/OU=HealtheID Test Infrastructure/CN=e
IDAS-HProxy SAML Encryption"

and	to	sign	SAML	metadata	

$ openssl ecparam -genkey -name secp384r1 -out priv/eidas-hproxy-meta.key
$ openssl req -x509 -new -key priv/eidas-hproxy-meta.key -sha512 \
 -out pub/eidas-hproxy-meta.pem -days 3650 \
 -config openssl.cnf -extensions eidas_sign \
 -subj "/C=IT/O=Politecnico di Torino/OU=HealtheID Test Infrastructure/CN=e
IDAS-HProxy SAML Metadata Signature"

You	can	check	the	content	of	the	X.509	certificates	by	running	the	command	

$ openssl x509 -in /path/to/certificate.pem -text –noout

HEALTHeID
Integration Guide

33 of 59

Note:	the	algorithm	used	to	generate	the	key	for	the	signature	of	SAML	requ
ests/responses	and	metadata	must	be	of	the	same	family	of	one	of	the	algori
thms	officially	supported	by	eIDAS:	

o eIDAS	supported	signature	methods	requiring	an	RSA	key:	

§ http://www.w3.org/2001/04/xmldsig-more#rsa-sha256	

§ http://www.w3.org/2001/04/xmldsig-more#rsa-sha384	

§ http://www.w3.org/2001/04/xmldsig-more#rsa-sha512	

§ http://www.w3.org/2001/04/xmldsig-more#rsa-ripemd160	

§ http://www.w3.org/2007/05/xmldsig-more#sha256-rsa-MG
F1	

o eIDAS	supported	signature	methods	requiring	an	EC	key:	

§ http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256	

§ http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha384	

§ http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512	

And	the	signature	method	algorithm	which	belongs	to	the	family	of	the	chos
en	key	generation	algorithm	must	be	declared	in	the	signature.algorithm	ent
ry	of	the	SignModule_SP.xml	(see	Module	Configuration	section).	E.g.,	in	the	i
nstructions	provided	previously	we	used	the	secp384r1	algorithm	for	gener
ating	the	signature	key	with	openssl,	which	is	of	the	same	family	as	the	http:
//www.w3.org/2001/04/xmldsig-more#ecdsa-sha512,	thus	the	latter	must	be	configu
red	as	the	signature.algorithm	entry	of	the	SignModule_SP.xml.	

3) Generate	a	password	for	the	keystore	(e.g.	using	the	pwgen	tool)	and	put	
the	password	file	(named	eidas-hproxy.jks.pwd)	in	the	jks	sub-directory	

apt-get install pwgen
$ echo -n `pwgen -s 16 1` > jks/eidas-hproxy.jks.pwd

4) Export	the	keys	and	certificates	to	PKCS-12	archives	

$ openssl pkcs12 -export -in pub/eidas-hproxy-sign.pem \
 -inkey priv/eidas-hproxy-sign.key \
 -certfile pub/eidas-hproxy-sign.pem -out p12/eidas-hproxy-sign.p12 \
 -name "eidas-hproxy-sign" \
 -password pass:`cat jks/eidas-hproxy.jks.pwd`

$ openssl pkcs12 -export -in pub/eidas-hproxy-enc.pem \
 -inkey priv/eidas-hproxy-enc.key \
 -certfile pub/eidas-hproxy-enc.pem -out p12/eidas-hproxy-enc.p12 \
 -name "eidas-hproxy-enc" \
 -password pass:`cat jks/eidas-hproxy.jks.pwd`

$ openssl pkcs12 -export -in pub/eidas-hproxy-meta.pem \

HEALTHeID
Integration Guide

34 of 59

 -inkey priv/eidas-hproxy-meta.key \
 -certfile pub/eidas-hproxy-meta.pem -out p12/eidas-hproxy-meta.p12 \
 -name "eidas-hproxy-meta" \
 -password pass:`cat jks/eidas-hproxy.jks.pwd`

5) Convert	 the	 keys	 and	 certificates	 in	 the	 PKCS-12	 archive	 to	 a	 new	 Java	
KeyStore	
$ keytool -importkeystore -destkeystore jks/eidas-hproxy.jks \
 -srckeystore p12/eidas-hproxy-sign.p12 -srcstoretype pkcs12 \
 -alias eidas-hproxy-sign -destkeypass `cat jks/eidas-hproxy.jks.pwd` \
 -deststorepass `cat jks/eidas-hproxy.jks.pwd` \
 -deststoretype jks -destalias eidas-hproxy-sign \
 -srcstorepass `cat jks/eidas-hproxy.jks.pwd`

$ keytool -importkeystore -destkeystore jks/eidas-hproxy.jks \
 -srckeystore p12/eidas-hproxy-enc.p12 -srcstoretype pkcs12 \
 -alias eidas-hproxy-enc -destkeypass `cat jks/eidas-hproxy.jks.pwd` \
 -deststorepass `cat jks/eidas-hproxy.jks.pwd` \
 -deststoretype jks -destalias eidas-hproxy-enc \
 -srcstorepass `cat jks/eidas-hproxy.jks.pwd`

$ keytool -importkeystore -destkeystore jks/eidas-hproxy.jks \
 -srckeystore p12/eidas-hproxy-meta.p12 -srcstoretype pkcs12 \
 -alias eidas-hproxy-meta -destkeypass `cat jks/eidas-hproxy.jks.pwd` \
 -deststorepass `cat jks/eidas-hproxy.jks.pwd` \
 -deststoretype jks -destalias eidas-hproxy-meta \
 -srcstorepass `cat jks/eidas-hproxy.jks.pwd`

- Module configuration
1) Replace	the	SignModuleSP.xml	file	with	the	following	content	

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">

<properties>
 <comment>SWModule sign with JKS.</comment>
 <entry key="check_certificate_validity_period">true</entry>
 <entry key="disallow_self_signed_certificate">false</entry>
 <entry key="signature.algorithm">http://www.w3.org/2001/04/xmldsig-more#ecdsa
-sha512</entry>
 <entry key="signature.algorithm.whitelist">
 http://www.w3.org/2001/04/xmldsig-more#rsa-sha256;
 http://www.w3.org/2001/04/xmldsig-more#rsa-sha384;
 http://www.w3.org/2001/04/xmldsig-more#rsa-sha512;
 http://www.w3.org/2001/04/xmldsig-more#rsa-ripemd160;
 http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha256;
 http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha384;
 http://www.w3.org/2001/04/xmldsig-more#ecdsa-sha512
 </entry>
 <entry key="response.sign.assertions">true</entry>
 <entry key="keyStorePath">$KEYSTORE</entry>
 <entry key="keyStorePassword">$PASSWORD</entry>
 <entry key="keyPassword">$PASSWORD</entry>
 <entry key="issuer">C=IT, O=Politecnico di Torino, OU=HealtheID Test Infrastr
ucture, CN=eIDAS-HProxy SAML Signature</entry>
 <entry key="serialNumber">$SIGN_SERIAL_NUMBER</entry>
 <entry key="keyStoreType">JKS</entry>
 <entry key="metadata.keyStorePath">$KEYSTORE</entry>
 <entry key="metadata.keyStorePassword">$PASSWORD</entry>

HEALTHeID
Integration Guide

35 of 59

 <entry key="metadata.keyPassword">$PASSWORD</entry>
 <entry key="metadata.issuer">C=IT, O=Politecnico di Torino, OU=HealtheID Test
Infrastructure, CN=eIDAS-HProxy SAML Metadata Signature</entry>
 <entry key="metadata.serialNumber">$META_SERIAL_NUMBER</entry>
 <entry key="metadata.keyStoreType">JKS</entry>
</properties>

	 where:	

- $KEYSTORE is the full path name of eidas-hproxy.jks
- $PASSWORD is the password used by eidas-hproxy.jks (content of the eidas-hproxy
.jks.pwd file)
- $SIGN_SERIAL_NUMBER is the serial number of the certificate used to sign SAML r
equest and responses
- $META_SERIAL_NUMBER is the serial number of the certificate used to sign SAML m
etadata

2) Replace the EncryptModule_SP.xml file with the following content
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">

<properties>
 <comment>SWModule encrypt with JKS.</comment>
 <entry key="check_certificate_validity_period">true</entry>
 <entry key="disallow_self_signed_certificate">false</entry>
 <entry key="response.encryption.mandatory">true</entry>
 <entry key="data.encryption.algorithm">http://www.w3.org/2009/xmlenc11#aes256
-gcm</entry>
 <entry key="encryption.algorithm.whitelist">
 http://www.w3.org/2009/xmlenc11#aes128-gcm;
 http://www.w3.org/2009/xmlenc11#aes256-gcm;
 http://www.w3.org/2009/xmlenc11#aes192-gcm
 </entry>
 <entry key="key.encryption.algorithm">http://www.w3.org/2001/04/xmlenc#rsa-oa
ep-mgf1p</entry>
 <entry key="keyStorePath">$KEYSTORE</entry>
 <entry key="keyStorePassword">$PASSWORD</entry>
 <entry key="keyPassword">$PASSWORD</entry>
 <entry key="keyStoreType">JKS</entry>
 <entry key="encryptionActivation">encryptionConf.xml</entry>
 <entry key="responseDecryptionIssuer">C=IT, O=Politecnico di Torino, OU=Healt
heID Test Infrastructure, CN=eIDAS-HProxy SAML Encryption</entry>
 <entry key="serialNumber">$ENC_SERIAL_NUMBER</entry>
</properties>

	 where:	

- $KEYSTORE is the full path name of eidas-hproxy.jks
- $PASSWORD is the password used by eidas-hproxy.jks (content of the eidas-hproxy
.jks.pwd file)
- $ENC_SERIAL_NUMBER is the serial number of the certificate used to encrypt attr
ibutes contained in SAML responses

The	values	for	issuer	and	serialNumber	can	be	obtained	by	listing	certificates	inside	
the	keystore.	
keytool	-list	-v	-keystore	eidas-hproxy.jks	
Note:	 When	 working	 with	 self-signed	 certificates,	 please	 make	 sure	 that	 the	
following	entry	is	set	to	false.	Otherwise,	set	to	true.	

HEALTHeID
Integration Guide

36 of 59

<entry	key="disallow_self_signed_certificate">false</entry>	

Importing eIDAS Connector (or National Adapter) signing certificate to the keystore
In order for eidas-hproxy component to trust the eIDAS Connector (or National Adapter), it is
necessary to add its public certificate in the keystore (which was created in the previous steps – it
must be the keystore configured in the metadata.keyStorePath entry of SignModule_SP.xml).

a) Navigate to the eIDAS Connector (or National Adapter) metadata URL using a web
browser.

b) Locate the public certificate used for signing. This is located in section
<md:IDPSSODescriptor> between the tags <ds:X509Certificate> and
</ds:X509Certificate>.

c) Extract the certificate to a file. For this you need to copy paste the certificate to a new text
file. Then add “-----BEGIN CERTIFICATE-----” and “-----END CERTIFICATE-----”
statements to the beginning and end of the file respectively. The file should look like this:
-----BEGIN CERTIFICATE-----
MIICNTCCAZ6gAwIBAgIES343gjANBgkqhkiG9w0BAQUFADBVMQswCQYDVQQGEwJVUzELMAkGA1UE
CAwCQ0ExFjAUBgNVBAcMDU1vdW50YWluIFZpZXcxDTALBgNVBAoMBFdTTzIxEjAQBgNVBAMMCWxv
…
…
QlRG5ITCZXY9hI0PygLP2rHANh+PYfTmxbuOnykNGyhM6FjFLbW2uZHQTY1jMrPprjOrmyK5sjJR
O4d1DeGHT/YnIjs9JogRKv4XHECwLtIVdAbIdWHEtVZJyMSktcyysFcvuhPQK8Qc/E/Wq8uHSCo=
-----END CERTIFICATE-----
If the issuer of the certificate is not trusted, you need the full certificate chain.

d) Import the newly created certificate file to the keystore using the following command
keytool -importcert -file connector.crt -keystore eidas.jks

You will be prompted if you wish to trust the certificate and if successful, the command
will output “Certificate was added to keystore”

Example error output when the certificate has not been added correctly:
 Caused by: eu.eidas.engine.exceptions.EIDASSAMLEngineException: Error (no.
samlengine.untrusted.certificate.code) processing request :
samlengine.untrusted.certificate.message - null
 at
eu.eidas.auth.engine.core.impl.AbstractProtocolSigner.checkValidTrust(AbstractProtocolSigner.ja
va:409)

Other common issues you may encounter

a) Although	 changes	 are	 made	 to	 the	 eidas-hproxy	 component	 (such	 as	
sp.return	 url),	 these	 seem	 to	 be	 ignored.	
This	may	happen	because	 the	 eIDAS	Connector	 (or	National	Adapter)	has	
stored	 the	 eidas-hproxy	metadata	 in	 cache.	 The	metadata	 is	 stored	 for	 a	
duration	 configured	 in	 sp.metadata.retention	 (default	 is	 24h)	 and	 this	 is	
expected	behavior.	Please	allow	the	time	to	expire,	or	use	a	smaller	retention	
value	during	the	initial	setup.	

HEALTHeID
Integration Guide

37 of 59

b) During	 download	 of	 the	 remote	 metadata,	 the	 following	 error	 appeards:	
javax.net.ssl.SSLHandshakeException:	
sun.security.validator.ValidatorException:	
PKIX	 path	 building	 failed:	
sun.security.provider.certpath.SunCertPathBuilderException:	 unable	 to	
find	 valid	 certification	 path	 to	 requested	 target	
The	 SSL/TLS	 (not	 eIDAS/SAML)	 certificate	 of	 the	 eIDAS	 Connector	 (or	
National	Adapter)	is	not	trusted	by	the	local	Java	installation.	You	will	need	
to	export	 the	public	 certificate	using	a	browser,	determine	 the	 location	of	
cacerts	 (Java	 CA	 certificates	 store)	 and	 import	 the	 certificate	 using	 the	
following	 command:
keytool -import -alias example -keystore [local-path]/cacerts -file example.cer

c) In	case	your	eIDAS	Connector	(or	National	Adapter)	is	exposing	a	metadata	
signed	 with	 an	 algorithm	 different	 than	 the	 ones	 listed	 in	 the	
signature.algorithm.whitelist	entry	of	the	SignModule_SP.xml	file	(e.g.,	RSA-
SHA1),	 you’ll	 need	 to	 edit	 the	 SAMLEngine	 project,	 namely	 the	 class	
eu/eidas/auth/engine/core/impl/AbstractProtocolSigner.java	 and	 add	 the	
specific	algorithm	to	all	the	ImmutableSets	(i.e.,	Signature	and	Digest),	and	
then	generate	a	new	version	of	the	eidas-saml-engine	JAR	file	to	be	included	
as	 a	 dependency	 of	 the	 eIDAS-HProxy.	 Plus,	 it’s	 also	 needed	 to	 add	 that	
algorithm	 to	 the	 signature.algorithm.whitelist	 entry	 of	 the	
SignModule_SP.xml	and	of	the	eidas-hproxy.properties.	

d) In	case	you	see	an	error	similar	to:	
o Caused	by:	

eu.eidas.auth.engine.configuration.ProtocolEngineConfigurationExce
ption:	Error	(no.	null)	processing	request	:	No	private	key	entry	
matching	serialNumber=XXXXXX	and	issuer=CN=something.gov,	
OU=MyOU,	O=MyO,	L=MyL,	C=MyC,	EMAILADDRESS=my-
email@gov.com	found	in	configured	keyStore	–	null	

This	might	 be	 due	 to	 a	 slight	 difference	 in	 the	 RFC	 representation	 of	 the	
certificates	 (experience	 with	 some	 certificates	 showed	 a	 single	 character	
differing,	with	no	clear	root	cause	to	this).	
You	 might	 need	 to	 change	 the	 eIDAS	 Encryption	 project,	 namely	 the	
eu.eidas.auth.engine.xml.opensaml.CertificateUtil.matchesCertificate	
method	 in	 the	 following	way	and	 regenerate	 the	eidas-encryption	 JAR	 file	
which	is	a	dependency	of	eIDAS-HProxy:	
public	static	boolean	matchesCertificate(String	serialNumber,	String	issuer,	
X509Certificate	certificate)	{	
							if	(null	==	certificate)	{	
											return	false;	
							}	
							BigInteger	serialNumberBigInteger	=	new	BigInteger(serialNumber,	16);	
							BigInteger	certificateSerialNumber	=	certificate.getSerialNumber();	

HEALTHeID
Integration Guide

38 of 59

							X500Principal	issuerPrincipal	=	new	X500Principal(issuer);	
							X500Principal	certificateSubjectPrincipal	=	
certificate.getSubjectX500Principal();	
							//create	the	X500Principal	based	on	the	string	representation	of	the	X.500	
distinguished	name	using	the	format	defined	in	RFC	2253	
							X500Principal	unencodedCertificateSubjectPrincipal	=	new	
X500Principal(certificateSubjectPrincipal.getName());	
							X500Principal	certificateIssuerPrincipal	=	
certificate.getIssuerX500Principal();	
							//create	the	X500Principal	based	on	the	string	representation	of	the	X.500	
distinguished	name	using	the	format	defined	in	RFC	2253	
							X500Principal	unencodedCertificateIssuerPrincipal	=	new	
X500Principal(certificateIssuerPrincipal.getName());	
							String	strprincipalKeystore	=	certificate.getIssuerDN().toString();	
							X500Principal	issuerPrincipalKeystore	=	new	
X500Principal(strprincipalKeystore);	
							return	serialNumberBigInteger.equals(certificateSerialNumber)	&&	(
															issuerPrincipal.equals(unencodedCertificateSubjectPrincipal)	||	
issuerPrincipal.equals(
																							issuerPrincipalKeystore));	
			}	
	

Metadata	generation	verification	
Load	https://<hostname/ip>:<port>/eidas-hproxy/eidas-hproxy/metadata	from	a	
web	browser	and	examine	the	resulting	XML	metadata	page.	Verify	the	following	
information:	

• entityID	should	match	the	sp.metadata.url	e.g.	

<md:EntityDescriptor	xmlns:md="urn:oasis:names:tc:SAML:2.0:metadata"	entityID="https://heid-
connector.test/eidas-hproxy/metadata"	validUntil="2019-09-25T19:30:09.882Z">	

• The	metadata	should	be	signed	e.g.	

<ds:SignatureValue>…</ds:SignatureValue>	

• Verify	that	the	public	X509	Certificates	appear	
• Verify	that	the	return	page	is	set	correctly	

<md:AssertionConsumerService	Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-
POST"	Location="http://heid-connector.test/eidas-
hproxy/AuthResponse"	index="0"	isDefault="true"/>	
<md:AssertionConsumerService	Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-
Redirect"	Location="http://heid-connector.test/eidas-hproxy/AuthResponse"	index="1"/>	

HEALTHeID
Integration Guide

39 of 59

	

1.7.3 NCP National Adapter

This	National	Adapter	(to	not	confuse	with	the	eIDAS	National	Adapter)	allows	the	
connection	 between	 the	 NCP	 HProxy	 of	 the	 HeID	 Connector	 and	 the	 NCPeH-B,	
requesting	from	the	latter	the	country-A	configuration	(international	search	mask	
and	eIDAS	eHealth	configuration).	It	consists	of	two	projects:	

● openncp-national-adapter-interface:	 this	 project	 will	 be	 inside	 the	
healtheid-ncp-hproxy	project	as	a	JAR	file.	It	provides	the	interface	towards	
which	the	NCP	HProxy	sends	requests.	

● openncp-national-adapter:	 this	 project	will	 be	 inside	 the	 healtheid-ncp-
hproxy	project	as	a	 JAR	 file.	 It	 is	a	default	 implementation	of	 the	National	
Adapter,	 provided	 by	 HEALTHeID,	 ready	 to	 connect	 to	 a	 default	
implementation/deployment	 of	 the	 OpenNCP,	 through	 the	 HEALTHeID-
enhanced	OpenNCP	CC	Web	Services	Client	Consumer	component	(openncp-
ncp-pt-client-consumer).	

Should	a	MS	wish	to	use	its	own	National	Adapter,	for	the	purposes	of	connecting	to	
a	 nationally	 customized	 NCPeH-B,	 the	 NCP	 HProxy	 (healtheid-ncp-hproxy)	
component	 defines	 a	 Maven	 profile	 –	 “national-build”	 –	 that	 gives	 the	 MS	 such	
flexibility,	pretty	much	in	the	same	way	they	already	do	in	eHDSI	with	the	National	
Connector	of	NCPeH-A.	

The	National	Adapter	dependency	is	parameterized	and	can	be	defined	within	the	
pom.xml	of	the	healtheid-ncp-hproxy	Maven	project.	

HEALTHeID
Integration Guide

40 of 59

It	must	be	highlighted	that,	even	in	the	case	of	a	MS	custom	National	Adapter,	the	
HEALTHeID-enhanced	 OpenNCP	 CC	 Web	 Services	 Client	 Consumer	 component	
(openncp-ncp-pt-client-consumer)	must	be	used	further	down	the	road,	in	order	to	
properly	 communicate	 with	 the	 HEALTHeID	 version	 of	 the	 OpenNCP	 Client	
Connector	(openncp-client-connector).	
	
Figure	3	illustrates	how	the	components	can	handle	two	different	implementations	
of	the	National	Adapter.	

HEALTHeID
Integration Guide

41 of 59

Figure 3 - National Adaptor integration in HEALTHeID

1.7.4 NCP HProxy

HEALTHeID
Integration Guide

42 of 59

The	NCP	HProxy	component	is	packaged	as	a	deployable	WAR	file	(healtheid-ncp-
hproxy).	For	testing	purposes,	it	can	be	launched	as	a	standalone	Spring	Boot	JAR	
file	containing	an	embedded	Tomcat.	
This	 component's	 behavior	 is	 managed	 by	 a	 set	 of	 properties	 within	 its	 self-
contained	default.properties	file.	The	following	instructions	allow	customization	of	
such	configurations.	
Add	the	following	configuration	in	Tomcat's	context.xml:	
	
<Parameter	name="ncp-hproxy.properties"	
value="/path/to/tomcat/properties/ncp-hproxy.properties"/>	
	
Where:	

• name:	it	must	be	ncp-hproxy.properties;	
• value:	absolute	path	to	a	custom	properties	file,	e.g.,	can	be	within	a	newly	

created	properties	 file	 inside	Tomcat	 (but	 this	 is	not	mandatory,	 it	 can	be	
anywhere	in	the	filesystem,	as	long	as	the	user	running	the	NCP	HProxy	has	
sufficient	permissions	to	read	it).	

The	 configurations	 contained	 in	 ncp-hproxy.properties	 file	 will	 overwrite	 the	
default	 configurations	 provided	 by	 the	 default.properties	 file	 included	 in	 the	
component	artefact.	If	this	file	doesn't	exist,	the	default	ones	apply.	The	following	
table	provides	information	on	the	configuration	properties:	

Name	 Value	 Description	

jwt.secret	 shared-secret-to-sign-
and-verify-JWT-token-
change-it	

JWT	 secret.	 Should	 be	
redefined	 by	 the	 MS.	
Currently	 not	 being	
validated.	

jwt.expiration	 7200	 JWT	 Expiration	 time	 (in	
seconds).	 Currently	 not	
being	validated.	

server.ssl.enabled	 true	 Enable	HTTPS.	 If	used,	 it	
should	 be	 “true”.	 Only	
used	 in	 the	 case	 the	
component	 is	 run	 as	 a	
standalone	 JAR	 file.	
Otherwise	 it	 can	 be	

HEALTHeID
Integration Guide

43 of 59

ignored,	 given	 that	 such	
configuration	is	provided	
by	the	application	server	
where	it’s	deployed.	

security.require-ssl	 true	 Requires	 SSL.	 If	 used,	 it	
should	 be	 “true”.	 Only	
used	 in	 the	 case	 the	
component	 is	 run	 as	 a	
standalone	 JAR	 file.	
Otherwise	 it	 can	 be	
ignored,	 given	 that	 such	
configuration	is	provided	
by	the	application	server	
where	it’s	deployed.	

server.ssl.key-store-
type	

JKS	 The	 format	 used	 for	 the	
keystore.	 It	 could	 be	 set	
to	 JKS	 in	 case	 it	 is	 a	 JKS	
file.	Only	used	in	the	case	
the	component	is	run	as	a	
standalone	 JAR	 file.	
Otherwise	 it	 can	 be	
ignored,	 given	 that	 such	
configuration	is	provided	
by	the	application	server	
where	it’s	deployed.	

server.ssl.key-store	 /home/user/health-
eid/healtheid-
connector/keystore/keyst
ore.jks	

The	path	 to	 the	keystore	
containing	the	certificate.	
Only	used	in	the	case	the	
component	 is	 run	 as	 a	
standalone	 JAR	 file.	
Otherwise	 it	 can	 be	
ignored,	 given	 that	 such	
configuration	is	provided	
by	the	application	server	
where	it’s	deployed.	

server.ssl.key-store-
password	

password	 The	 password	 used	 to	
generate	 the	 certificate.	
Only	used	in	the	case	the	
component	 is	 run	 as	 a	
standalone	 JAR	 file.	
Otherwise	 it	 can	 be	
ignored,	 given	 that	 such	
configuration	is	provided	

HEALTHeID
Integration Guide

44 of 59

by	the	application	server	
where	it’s	deployed.	

server.ssl.key-alias	 healtheid-hproxy	 The	 alias	 mapped	 to	 the	
certificate.	 Only	 used	 in	
the	case	the	component	is	
run	 as	 a	 standalone	 JAR	
file.	 Otherwise	 it	 can	 be	
ignored,	 given	 that	 such	
configuration	is	provided	
by	the	application	server	
where	it’s	deployed.	

server.tomcat.remote-
ip-header	

x-forwarded-for	 Name	 of	 HTTP	 header	
from	which	the	remote	IP	
is	 extracted.	 If	 used,	 it	
must	 be	 “x-forwarded-
for”.	Only	used	in	the	case	
the	component	is	run	as	a	
standalone	 JAR	 file.	
Otherwise	 it	 can	 be	
ignored,	 given	 that	 such	
configuration	is	provided	
by	the	application	server	
where	it’s	deployed.	

server.tomcat.protocol-
header	

x-forwarded-proto	 Enable	setting	the	header	
of	 incoming	 protocol.	 If	
used,	 it	 must	 be	 “x-
forwarded-proto”.	 Only	
used	 in	 the	 case	 the	
component	 is	 run	 as	 a	
standalone	 JAR	 file.	
Otherwise	 it	 can	 be	
ignored,	 given	 that	 such	
configuration	is	provided	
by	the	application	server	
where	it’s	deployed.	

	
Even	 though	 the	 NCP	 HProxy	 is	 configured	 to	 use	 Spring	 Security	 to	 increase	
security,	at	the	moment,	its	only	endpoint	is	freely	exposed	(i.e.,	no	JWT	or	any	other	
kind	 of	 token	 validation	 is	 performed,	 as	 described	 previously	 in	 the	 jwt.*	
properties).	But	the	component	is	prepared	to	be	configured	accordingly.	
	

HEALTHeID
Integration Guide

45 of 59

Following	the	previous	alternatives	for	the	National	Adapter,	its	consequences	on	
the	NCP	HProxy	deployment	are	the	following:		
	
NCP	HProxy	default	implementation	
With	the	default	implementation	provided	by	HEALTHeID,	the	NCP	HProxy	must	be	
deployed	in	the	NCP	infrastructure,	since	the	default	National	Adapter	depends	on	
the	 EPSOS_PROPS_PATH	 environment	 variable	 (deeply	 tied	 to	 the	 OpenNCP	
reference	implementation	components	–	in	Figure	3,	the	OpenNCP	CC	Web	Services	
Client	 Consumer).	 This	 variable	 must	 be	 available	 (e.g.,	 via	 the	 Tomcat’s	
/bin/setenv.sh	 file).	 Additionally,	 the	 JNDI	 resource	 jdbc/ConfMgr,	 demanded	by	
the	OpenNCP	components,	must	be	configured	in	the	Tomcat	where	the	NCP	HProxy	
is	deployed	(in	/conf/context.xml	and	/conf/server.xml).		
Tomcat	context.xml:	

Tomcat	server.xml:	

For	the	previous	configuration,	a	JDBC	Connection	Pool	such	as	HikariCP	must	be	
available.	This	is	achieved	by	placing	the	HikariCP-2.6.3.jar,	slf4j-api-1.7.25.jar	and	
mysql-connector-java.jar	 (e.g.,	 version	 5.1.48)	 in	 the	 Tomcat’s	 /lib	 folder	 (same	
versions	used	by	the	OpenNCP	are	used	here	for ease	of	installation).	Following	are	
the	Maven	 artefacts	 declaration	 to	 help	 their	 identification	 in	 the	Maven	Central	
repository.

HEALTHeID
Integration Guide

46 of 59

<dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>5.1.48</version>
</dependency>
<dependency>
 <groupId>com.zaxxer</groupId>
 <artifactId>HikariCP</artifactId>
 <version>3.1.0</version>
</dependency>
<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>1.7.25</version>
</dependency>

In	case	another	database	provider	is	used,	a	different	JAR	file	than	the	MySQL	one	
must	be	used	and	the	JNDI	resource	must	be	configured	accordingly.	
This	 default	 implementation	 of	 the	 NCP	 HProxy	 looks	 for	 the	 property	
PORTAL_CLIENT_CONNECTOR_URL	 of	 the	 OpenNCP	 properties	 schema	
(ehealth_properties),	which	should	point	to	the	OpenNCP	Client	Connector	deployed	
at	NCP-B	(as	in	a	typical	OpenNCP	installation).	
	
NCP	HProxy	national	implementation	
With	 a	 national	 implementation,	 it	 may	 be	 deployed	 separately	 from	 the	 NCP	
infrastructure.	
	
	
	
	

1.7.5 Patient I/O

HEALTHeID
Integration Guide

47 of 59

This	component	is	using	bootstrap4	(https://getbootstrap.com/)	as	base	for	CSS.	
The	following	pages	will	be	displayed	to	the	patient:	

• Welcome	page	

	
• Cancel	Encounter	

	
● Acknowledge	page	(“/patientEncounter/patientAcknowledge”):	accept	

acknowledge,	dummy	model	created	pointing	to	project	classpath	file	
(acknowledge.path=classpath:acknowledge/default.html)	and	can	be	
configured	to	use	another	file	from	the	source.	

HEALTHeID
Integration Guide

48 of 59

• Cancel	Encounter	

● Additional	Data	page	(“/patientEncounter/additionalPatientData”):	here	the	

patient	adds	all	the	information	needed	but	not	provided	by	eIDAS.	This	will	
follow	the	search	mask	attributes	for	mapping	purpose.	

HEALTHeID
Integration Guide

49 of 59

	

● Cancel	Encounter	

	
● Encounter	Accepted	

	
● Error	Page:	This	page	will	be	shown	if	any	internal	error	occur	

HEALTHeID
Integration Guide

50 of 59

	

Notification	Adapter	

The	Notification	Adapter	component	is	packaged	as	a	deployable	JAR	file	(healtheid-
notification-adapter).	
This	component	implements	an	email	service	for	Patient	notification.	It	receives	the	
patient	email	from	the	Workflow	Manager	with	the	kind	of	notification	to	send,	and	
sends	an	email	based	on	the	type	of	notification,	e.g.,	communicates	the	encounter	
link	to	the	patient	or	informs	him	about	what	is	happening	in	the	OpenNCP	world	
(PS/eP/eD	 retrieval/submission,	 PIN	Acknowledgement/Consent	 decisions).	 The	
Notification	Adapter	implementation	is	required,	and	each	Member	State	can	create	
its	 own.	 This	 one	 provides	 the	 email	 feature	 for	 demonstration	 purposes.	 The	
application.properties	 file	 sets	 the	 mail	 configuration	 properties	 to	 realize	 the	
service	with	Spring.	The	following	table	provides	information	on	the	configuration	
properties:	

Name	 Value	 Description	

spring.mail.host	 smtp.gmail.com	 Email	server	host.	It	should	
be	 redefined	 by	 the	 MS	
according	 to	 their	 email	
infrastructure	
configuration.	

spring.mail.port	 587	 Email	server	port.	It	should	
be	 redefined	 by	 the	 MS	
according	 to	 their	 email	
infrastructure	
configuration.	

spring.mail.username	 testconnector2019@gma
il.com	

Email	 authentication	
username.	 It	 should	 be	
redefined	 by	 the	 MS	

HEALTHeID
Integration Guide

51 of 59

according	 to	 their	 email	
infrastructure	
configuration.	

spring.mail.password	 TestConnector2019	 Email	 authentication	
password.	 It	 should	 be	
redefined	 by	 the	 MS	
according	 to	 their	 email	
infrastructure	
configuration.	

spring.mail.properties.
mail.smtp.starttls.enabl
e	

true	 Enable	 StartTLS.	 It	 should	
be	 redefined	 by	 the	 MS	
according	 to	 their	 email	
infrastructure	
configuration.	

spring.mail.properties.
mail.smtp.starttls.requi
red	

true	 Require	StartTLS.	It	should	
be	 redefined	 by	 the	 MS	
according	 to	 their	 email	
infrastructure	
configuration.	

spring.mail.properties.
mail.smtp.ssl.enable	

false	 Enables	 SSL.	 It	 should	 be	
redefined	 by	 the	 MS	
according	 to	 their	 email	
infrastructure	
configuration.	

spring.mail.properties.
mail.smtp.auth	

true	 Enables	 email	
authentication.	 It	 should	
be	 redefined	 by	 the	 MS	
according	 to	 their	 email	
infrastructure	
configuration.	

HEALTHeID
Integration Guide

52 of 59

spring.mail.properties.
mail.smtp.connectionti
meout	

5000	 Connection	 timeout	 (in	
ms).	

spring.mail.properties.
mail.smtp.timeout	

5000	 Timeout	(in	ms).	

spring.mail.properties.
mail.smtp.writetimeout	

5000	 Write	timeout	(in	ms).	

email.from	 no-reply@company.com	 Email	sender.	

	

The	properties	contained	in	the	Notification	Adapter’s	application.properties	file	are	
not	 set	 (i.e.,	 they’re	 commented)	 since	 they’re	 in	 fact	 globally	 set	 by	 the	 HeID-
Connector	component	(in	 its	default.properties	 file),	which	 includes	this	one.	But	
they	can	be	set,	should	you	wish	to	run	the	component	locally,	in	an	isolated	way.	To	
overwrite	 the	Notification	 Adapter	 default	 configurations	 provided	 by	 the	HeID-
Connector	default.properties	 file	 included	within	the	 latter,	you	must	provide	the	
custom	 values	 in	 the	 healtheid-connector.properties	 file	 deployed	 within	 the	
Tomcat	(as	explained	in	section	1.7.1).	

The	necessary	network	infrastructure	and	email	configurations	must	be	prepared	
in	advance	by	the	MS	(e.g.,	configuring	email	relay	server;	network	access	between	
the	HEALTHeID-Connector	infrastructure	and	email	infrastructure).	

To	 enable	 the	 sending	 SMS	 feature,	 the	 module	 needs	 of	 an	 SMS	 gateway	
(demonstration	 not	 provided).		
Considering	 that	 the	Notification	Adapter	 interacts	directly	with	 the	Patient,	 this	
module	can	be	supposed	as	part	of	the	Patient	Data	I/O.	

	

1.7.6 HeID Connector – Flow Example
Following	is	a	technical	overview	of	the	steps	performed	by	the	HeID	Connector	
during	a	typical	HeID	scenario.	

1	-	createEncounter	(step	1	to	step	6)	:	
	 1a-	Generate	JWT	

HEALTHeID
Integration Guide

53 of 59

1b-	Store	the	encounter	in	DB	
	 1c	-	Send	SMS/Email	to	the	Patient	
				 1d	-	Return	JWT	
	
2	-	acceptEncounter	-	Triggered	by	the	Patient,	on	click	
					 	2a	-	Validate	Token	
			 	2b	-	Redirect	to	welcome	page	
	
3	-	acceptEncounter	-	Triggered	by	the	Patient,	on	click	of	Authenticate	button		

3a	-	Validate	Token	
3b	-	Redirect	to	Login	Screen	of	eIDAS													

	
4	-	acceptPatientAuthN	–	Triggered	by	eIDAS-HProxy	after	Patient	AuthN	
						 4a	-	Validate	Token	
					 4b	 -	 Receives	 the	 eIDAS	 information	 with	 the	 token	 retrieved	 by	 the	
InResponseTo	 SAML	 attribute	
						 4c	-	Redirect	to	acknowledge	screen	
	
5	-	acknowledgeStore	(Sent	from	acknowledge	screen)	
						 5a	-	Validate	Token	
					 5b	-	Store	the	acknowledge	in	DB		
														5c	-	Send	notice	to	Patient	about	acknowledgement		
														5d	-	Check	if	it’s	needed	to	collect	the	consent	(not	implemented)	

5dd	-	[optional]	-	Redirect	to	Consent	page	(not	implemented)	
5e	-	SMP	Country	Configuration	Search	
5f	-	Store	health	country	configuration	in	DB	
5g	-	Check	if	manual	additional	data	is	needed	or	not	
				5gg	-	[optional]	Redirect	to	Patient	Additional	Data	screen	
5h	-	Update	encounter	table	the	field	“DataReady”	to	value	“true”	

					 5i	-	Redirect	to	encounter	accepted	page	
	
6	-	patientConsent	(Redirect	consent	page)	[OPTIONAL]	(not	implemented)	

6a	-	Validate	Token	
6b	-	Store	consent	in	DB	
6c	-	Send	notice	to	Patient	about	consent	
6d	-	SMP	Country	Configuration	Search	
6e	-	Store	health	country	configuration	in	DB	
6f	-	Check	if	manual	additional	data	is	needed	or	not	

HEALTHeID
Integration Guide

54 of 59

			6ff	-	[optional]	Redirect	to	Patient	Additional	Data	screen	
6g	-	Update	encounter	table	the	field	“DataReady”	to	value	“true”	
6h	-	Redirect	to	encounter	accepted	page	
	

	
7	 -	additionalPatientData	(Sent	 from	 the	 Patient	 Additional	 Data	 screen)	
[OPTIONAL]	
						 7a	-	Validate	Token	
						 7b	-	Receive	information	from	screen	
	 7c	-	Store	additional	Data	in	DB	

7d	-	Update	encounter	table	the	field	“DataReady”	to	value	“true”	
						 7d	-	Redirect	to	encounter	accepted	page	
	
	
8	-	requestPatientData	-	(Used	by	HeID	Cilent	to	retrieve	patient	authN	information,	
a	poll	method	is	available	on	openncp-portal)	
						 8a	-	Validate	Token	
					 8b	 -	 Search	 information	 saved	 in	 the	 database/memory,	 using	 Token	 as	
primary	key	to	search	
					 8c	-	Return	all	information	if	it	exists	
	
9	–	notifyPatient	(Will	be	called	twice)	
						 9a	-	Validate	Token	
						 9b	 -	 Notifies	 Patient	 that	 Document	 or	 information	 has	 been	 read	 by	HP,	
according	to	parameter	passed.	
	 	 9bb	–	[XCPD]	Update	patient	ID	in	DB	
	

1.8 NCPeH-A

HEALTHeID
Integration Guide

55 of 59

NCPeH-A	is	now	able	to	publish	in	the	eHDSI	Central	Configuration	Service	(SMP)	a	
new	 type	 of	 SMP	 file	 containing	 configurations	 related	 to	 the	 application	 of	 the	
eIDAS	 assertion	 data	 in	 eHealth:	 eIDAS	 eHealth	 Configuration.	 The	 OpenNCP-
Gateway	is	the	component	responsible	for	the	generation	and	publication	of	this	file.	

In	the	Extension	element	of	this	new	SMP	record,	an	XML	file	should	be	provided.	
This	file	should	have	the	following	structure	(sample	values	included):	

The	schema	structure	contains	3	elements:	
•	 patientInputNeeded:	answers	 to	 the	question	“Do	we	need	our	patients	 to	
input	their	patientID	(and	other	data)?”;	
•	 patientIdMappableEidasAttribute:	Friendly	name	of	the	eIDAS	attribute	from	
which	we	can	derive	or	map	to	the	patientID;	
•	 patientIdMappableEidasAttributeOid:	OID	of	the	beforementioned	attribute.	
	
To	understand	the	effects	of	this	configuration	in	the	workflow	please	consult	the	
following	attached	spreadsheet:	

<?xml version="1.0" encoding="UTF-8"?>
<EidasEhealthConfiguration xmlns="http://ec.europa.eu/sante/ehncp/eidas">
 <patientInput>
 <patientInputNeeded>true</patientInputNeeded>
 <patientIdMappableEidasAttribute>PersonIdentifier</patientIdMappableEidasAttribute>

<patientIdMappableEidasAttributeOid>2.16.620.1.101.10.1.3</patientIdMappableEidasAttribu
teOid>
 </patientInput>
</EidasEhealthConfiguration>

HEALTHeID
Integration Guide

56 of 59

	
To	take	advantage	of	HEALTHeID-enhanced	OpenNCP-Gateway	(openncp-gateway	
WAR	file),	the	version	provided	by	the	HEALTHeID	project	must	be	deployed	by	the	
country.	

1.9 NCPeH-B

The	 NCPeH-B	 side	 was	 enhanced	 with	 a	 feature	 for	 fetching	 the	 eIDAS	 eHealth	
Configuration	and	returning	it	to	the	NCP	HProxy	via	the	National	Adapter,	which	in	
turn	uses	 the	HEALTHeID-enhanced	OpenNCP	CC	Web	Services	Client	Consumer	
component,	as	depicted	in	Figure	3.	This	configuration	is	saved	in	the	NCPeH-B	file	
system,	 pretty	much	 in	 the	 same	way	 already	 done	 for	 the	 international	 search	
masks,	 in	 the	 folder	 $EPSOS_PROPS_PATH/eidas,	 with	 the	 filename	 such	 as	
EidasEhealthConfig_CC.xml,	where	CC	is	the	ISO	3166-1	alpha-2	country	code.	This	
folder	is	created	automatically	by	the	component.	
To	take	advantage	of	these	features,	the	version	of	the	OpenNCP	Client	Connector	
(openncp-client-connector	WAR	file)	provided	by	the	HEALTHeID	project	must	be	
deployed	by	the	country.		

1.10 eIDAS National Adapter

eidas-assertion-xcp
d-match-20191114.xlsx

HEALTHeID
Integration Guide

57 of 59

The	NationalAdapter	module	has	been	developed	to	fulfill	the	specific	Italian	needs,	
when	an	italian	patient	has	an	encounter	with	a	HP	in	another	Member	State,	but	
can	be	modified	in	order	to	be	used	in	other	scenarios.	It	includes	two	components:	
NationalAdapter.war	and	NationalAdapterSpidService.war	
NationalAdapter.war	module	is	designed	to:	

- Validate	the	eIDAS	SAML	Request	sent	by	the	Service	Provider	
- Forward	the	eIDAS	SAML	Request	to	the	NationalAdapterSpidService	

component	
- Create	the	eIDAS	SAML	Response	adapting	the	SPID	SAML	Response	

prepared	by	the	NationalAdapterSpidService	component	
- Send	the	eIDAS	SAML	Response	to	the	Service	Provider	
- Publish	online	the	metadata	needed	to	the	Service	Provider	

NationalAdapterSpidService.war	is	designed	to:	
- Create	the	SPID	SAML	Request	adapting	the	eIDAS	SAML	Request	
- Send	the	SPID	SAML	Request	to	the	Italian	eIDAS	Proxy	
- Validate	the	SAML	Response	received	from	the	Italian	eIDAS	Proxy	
- Send	the	SPID	SAML	Response	to	the	NationalAdapter	module

A	Member	 State	willing	 to	use	 the	NationalAdapter	 component	must	 replace	 the	
NationalAdapterSpidService	 with	 a	 specific	 module	 focuses	 on	 the	 eIDAS<-
>national	protocol	conversion.	
It	 is	 needed	 to	 define	 the	 property	 national.protocol.converter.url	 available	 in	
nationalAdapter.properties	using	 the	URL	of	 the	 specific	national	module	 (which	
will	replace	NationalAdapterSpidService).	
Furthermore,	the	servlet	eu.eidas.idp.ProcessResponse	has	to	be	modified	in	order	
to	work	with	the	national,	specific	implementation	–	its	goal	is	to	trasform	the	SPID	
Response	 sent	by	 the	NationalAdapterSpidService	 into	an	eIDAS	SAML	Response	
and	forward	it	to	the	Service	Provider.	
The	 NationalAdapter	module	 has	 been	 developed	 starting	 from	 the	 eIDAS	 Node	
reference	 implementation,	 hence	 it	 needs	 some	 configuration	 starting	 from	 the	

HEALTHeID
Integration Guide

58 of 59

original	files	(i.e.	keystore	for	signature/encryption,	white	list	configuration,	etc).	To	
do	 so,	 it	 is	 recommended	 to	 read	 the	 installation	 guide	 of	 the	 eIDAS	 Node	
(https://ec.europa.eu/cefdigital/wiki/display/CEFDIGITAL/eIDAS-
Node+Integration+Package)	
Should	a	proxy	be	used	to	download	metadata,	all	necessary	configurations	must	be	
defined	in	the	JVM	options,	as	briefly	illustrated	in	the	example	below:	
	-Dhttps.proxyHost=host	
	-Dhttps.proxyPort=port	
	-Dhttps.proxyUser=user	
	-Dhttps.proxyPassword=password	
	-Dhttp.nonProxyHosts=excluded_host		

A	 Member	 State	 could	 be	 interested	 just	 to	 see	 the	 eIDAS	 authentication	 flow,	
without	engaging	the	real	operational	eIDAS	network,	e.g.	because	such	a	Country	
could	not	be	ready	to	be	operational	in	the	eIDAS	network	although	interested	in	the	
project.	It	is	possible	to	do,	performing	the	following	operations:	
-	install	a	component	called	“IdP	demo”	(In	order	to	properly	install	the	“IdP	demo”,	
is	 recommended	 to	 read	 the	 following	 document:		
https://ec.europa.eu/cefdigital/wiki/download/attachments/82772096/eIDAS-
Node%20Demo%20Tools%20Installation%20and%20Configuration%20Guide%2
0v1.4.3.pdf)	
-	set	the	node.type	property,	available	in	nationalAdapter.properties	file,	with	value	
“eidas”.	Such	a	value	forces	the	National	Adapter	to	work	in	a	“simulate	mode”.	
	
It	has	 to	be	noted	 that,	 today,	 a	Country	B	cannot	use	 the	above	mentioned	 “IdP	
demo”	in	order	to	simulate	the	eIDAS	flow	for	a	Country	A1	which	is	not	yet	ready	
with	its	eIDAS	infrastructure	and,	at	the	same	time,	integrate	a	Country	A2	ready	for	
the	full	eIDAS	experience.	In	other	words,	what	can	be	done	today	is	a	full	eIDAS	
experience	 for	 any	 Country	 of	 Origin,	 or	 a	 simulated	 eIDAS	 experience	 for	 any	
Country	of	Origin.	We	foresee	this	enhancement	can	be	done	at	the	eIDAS	connector	
level,	where	the	several	EU	flags	are	displayed	–	if,	 for	example,	the	user	chooses	
Country	A2,	 a	 real	 eIDAS	 authentication	 flow	 is	 performed,	 and	 if	 Country	A1	 is	
chosen,	 the	 eIDAS	 stub	 is	 engaged.	 This	 improvement	 is	 out	 of	 the	 scope	 of	 this	
project	and	can	be	developed	in	a	second	stage.	
	
All	tests	have	been	performed	with	Java	8	and	Tomcat	8.	
The	following	image	shows	the	various	flows	and	protocols	engaged:	

HEALTHeID
Integration Guide

59 of 59

1.11 PatientID Resolver

This	component	is	not	provided	by	HEALTHeID,	although	its	existence	is	assumed.	
It’s	up	to	each	country	how	it	is	implemented:	whether	in	the	National	Connector	of	
NCPeH-A	 or	 in	 the	 National	 Infrastructure	 of	 country-A	 itself.	 It	 must	 be	 able	
unambiguously	resolve	whatever	data	it	receives	from	the	eHDSI	XCPD	request	into	
a	 patient	 ID	 that	 can	 be	 returned	 to	 country-B	 for	 the	 subsequent	 cross-border	
eHealth	requests.	 It	should	be	noted	that	the	 information	coming	from	the	eIDAS	
world	 is	 sent	 as-is	 to	 the	 eHDSI	 world	 within	 the	 XCPD,	 e.g.,	 the	 eIDAS	
PersonIdentifier	will	arrive	in	NCPeH-A	in	the	format	IT/PT/XXXXX,	for	an	Italian	
citizen	that	authenticated	against	a	Portuguese	Service	Provider.

